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We study a hierarchical model for interfaces in a random-field ferromagnet. We 
prove that in dimension D > 3, at low temperatures and for weak disorder, such 
interfaces are rigid. Our proof uses renormalization group transformations for 
stochastic sequences. 
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1. i N T R O D U C T I O N  

One of the first questions the theory of disordered systems should be able 
to answer is whether and when "weak" disorder in a given model  system 
is "relevant," that  is, whether impor tan t  properties of the "ordered" system 
change qualitatively when a weak r andom per turbat ion of a certain type is 
applied. A typical example of  such a question is whether the phase struc- 
ture at low temperatures 4 in, say, a ferromagnetic spin system is preserved 
when, e.g., r a n d o m  magnetic  field is applied or  when the exchange coupling 
is subjected to a r andom modula t ion  (for instance, due to impurities). 
Notably ,  in the random-field Ising model  (RFIM) ,  in dimension three, this 
question was under  strong dispute a m o n g  physicists over several years, 
before it was resolved th rough  rigorous mathematical  proofs by Bricmont  
and Kupia inen (3'4) and Aizenman and Wehr. (1) A still more  subtle question 
of  considerable interest concerns non-translat ional- invariant  Gibbs states, 
or  domain walls, in these same models and, more, generally the rigidity of 
interfaces in disordered media, a question arising in a variety of contexts 
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(for a recent review on interfaces in random media, and an extensive list of 
references, see, e.g., ref. 12). 

There are two basic tools that are habitually used to investigate such 
questions: One is the so-called "replica-trick" that allows one to formally 
compute averages over the disorder in quenched systems by expressing them 
in terms of zero-component lattice field theories, thus allowing for the use 
of standard methods (perturbation expansions, renormalization group, etc.) 
from statistical mechanics. In the context of interface models in disordered 
media, this approach has led to the development of the "functional renor- 
malization group" method of Fisher (1~ that has led to a variety of precise 
predictions of scaling exponents in a large variety of models (see, e.g., 
refs. 14 and 18). However, there remain problems in the justification of these 
approaches and there has been criticism from various sides. (5'17) Another, 
much more simple-minded tool is the so called " Im ry -Ma  argument ''(16) 
and scaling arguments based on it. (2'~8) It is essentially an extension of the 
old Peierls argument to random systems and consists of balancing "typical" 
contributions to the energy and entropy of configurations coming from the 
random and nonrandom parts of the interactions. We will come back to this 
in our context in a moment. In spite of its simplicity, the Imry-Ma argument 
has proven extremely successful and has, in cases of dispute, shown more 
reliable than the more sophisticated analysis based on the replica trick (see, 
e.g., refs. 3 and 4 for a historic review in the RFIM context). 

The appealing simplicity of the Imry-Ma argument has inspired math- 
ematical physicists to construct rigorous proofs of its predictions. In the 
context of the RFIM, this has culminated, through the works of Chalker, (8) 
Fisher etal.,  (11) and Imbrie, (15/ in the rigorous renormalization group 
method of Bricmont and Kupiainen. (3'4) It is this method that will, in 
our opinion, provide the tools to analyze mathematically the effects of 
randomness in many other disordered systems. 

In a recent paper Bovier and Picco (7) have applied this renormaliza- 
tion group method for a hierarchical model of interfaces in the random 
bond Ising model and proved that in dimension D > 3 at low temperatures 
and for weak disorder, such interfaces are "rigid." In the present paper we 
want to extend this analysis to interfaces in the random-field model while 
at the same time streamlining the proofs. 

Let us first discuss the heuristics of this situation through the 
Imry-Ma argument. Let us recall that the RFI Hamiltonian is given by 

H R F I =  --  2 SiSj AU~'~ r (1.1) 
<~j> i 

where the first sum is over all nearest neighbor pairs ( / j )  on a lattice 77 ~ 
and s, are Ising spins taking the values ___ 1. The random fields {, are taken 



Hierarch ica l  In te r faces  in a R a n d o m  Field M o d e l  81 

to be independent, identically distributed random variables (i.i.d.r.v.) with 
mean zero and variance ~. 

In principle, one is interested in the question of whether at low 
temperatures there exist, in this model, pure equilibrium states in which a 
flat interface separates a half-space where the spins are predominantly + 1 
from its complement with predominantly -1-spins (such states are called 
Dobrushin states(9)). To construct such states, one considers finite volumes 
(for simplicity we may take D-dimensional hypercubes) and applies plus 
boundary conditions on the top half and minus boundary conditions on 
the bottom half of the cube. In the absence of the random field, the corre- 
sponding ground state then has all spins above the equatorial plane equal 
to plus one and all those below equal to minus one; there is a flat interface 
in the equatorial plane separating the plus and minus phase. It is known 
from the work of Dobrushin (9) and Gallavotti 113~ that in D ~> 3 at low 
temperatures Gibbs states concentrated near this configuration exist (the 
interface is "stable") while in D ~<2 at any nonzero temperature such an 
interface will have unbounded fluctuations (in the thermodynamic limit) 
and translational invariance of the Gibbs state is restored. 

To predict the effect of the random field in this situation, one may try 
to estimate the change in energy produced by deforming the flat interface. 
For simplicity, we may consider a cylinder of height h and diameter L 
sitting on the flat interface. If we flip all the spins in this cylinder, we get 
two contributions to the energy: A surface energy from the "wall" of the 
cylinder, Esurf~LD-2h, and a volume energy from the r a n d o m field, 
Evol'~ +2 Zi~oyl ~i, where the sign depends on whether the deformation 
builds into the minus or plus phase. Now the ~i are assumed to be inde- 
pendent random variables with mean zero and variance ~, so by the central 
limit theorem, for large cylinders the energy contribution of the random 
fields is "typically" of the order of Evo~ ~ a ( h L ~  1/2, with arbitrary sign. 
Now, if D > 3, for any h and L large, the volume term will always be small 
compared to the surface term and thus this Imry-Ma argument predicts 
that the random fields are irrelevant in D > 3. 

While at first glance this argument seems convincing, some more 
reflection shows that in principle it could be quite false. For, even if we are 
just interested in the form of the ground state, the real question is not what 
the energy of some, be it "typical" deformation is, but whether there exists 
some deformation, albeit a very exceptional one, that has a negative energy. 
In some sense, the question of interface stability is rather one of large 
deviations then of central limit theorems. Fortunately, in probability theory, 
these two things frequently go hand in hand. However, a serious problem 
one is facing when trying to analyze this situation is that the number of 
possible deformations of the interface (of, say, fixed height and volume) is 
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far too large to permit one to estimate the probability that there exists one 
with negative energy by the sum of the corresponding probabilities. While 
such a bound is acceptable if one has only small deformations (where the 
scale of "small" depends on the variance of the random fields), on a large 
scale it gives divergent results. It is thus crucial to take into account the 
dependence of the random variables corresponding to different, but not very 
different, deformations. For the bulk phase of the RFIM, this had first been 
done, under some restrictions, in refs. 8 and 11, but the most natural 
approach to solving this problem is the renormalization group. (3'4) In the 
present paper we will perform such a renormalization group analysis in 
a somewhat simplified hierarchical model for the interface in the RFIM. 
The main virtue of this approximation is that the combinatoric aspects of 
the proofs simplify considerably while the main probabilistic features of the 
problem are preserved. We would like to note that compared to the random 
bond case treated in ref. 7, these present some serious complications in 
that correlations between random variables have to be kept track off in the 
renormalization process. 

Let us now give a definition of the hierarchical model we want to 
study. In this model, the interface is given by a collection of towers and 
wells whose bases are formed by squares of side lengths L n, where L is 
some positive integer to be chosen. More precisely, we consider a 
d-dimensional (we set always d - - D - 1 )  square of side length L N. We 
divide it into L d squares of side length L N- 1, each of these into L d squares 
of side length L ~ 2, and so forth until we arrive at squares of side length 
one. All these squares form the potential bases of towers. The squares of 
the nth hierarchy (i.e., those of side length L n) are labeled by the set 

Yn={Y  e y d  lY, s{O ..... L N n _ l } }  (1.2) 

We denote by ~ - 1  the map from Y~ to Yn+l such that (Sf ly)i= 
int(yi/L), i.e., the map that associates to y e Y, the block in the next 
hierarchy that contains y. We also denote, following the usual habit, for 
Y e Y~ + 1, by LPy the collection of the sites x e I1, such that 5g - ix  = y. 

A surface is described by specifying a set of heights of towers of all 
hierarchies, 

{ /~ (n )  ~ n = 0,..., N 
*=y JY~ Yn 

Obviously the actual height of the surface above the point x, --xt4~N), is given 
by the sum of all the heights of all towers whose base contains x, i.e., 

N 
( N )  _ _  

- (1.3) 
n = 0  
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Note that such a surface is in particular of the solid-on-solid (SOS) type. 
The energy of a surface is given by 

with 

N 

Eu, j({h})= ~ ~ h ~") L~d-~"+ ~ J~(H(x u)) (1.4) - - y  

n = 0  y E  Yn x ~  YO 

12"x,h if hx~>l 

J~(hx) = if hxx = 0 

" x~ 2r if h ~ < - - i  ( -- h/-"h~ ' 

[Note that we use the notation i =  (x, h) for points ie  7/D.] 
The partition function ZN(fi, J) is defined as 

(1.5) 

ZN(fl, J)= ~ e -~E~,s((h~ (1.6) 
{h} 

We also define the finite-volume Gibbs measures ]~N, fl,J on the probability 
space of the {h} by 

1 
~N,~,J(.) = zN(/~, J) ~ .e ~EN.j~h;~ (1.7) 

{h} 

A quantity of particular interest will be the expectation of the absolute 
value of the height of the interface at a given point x, 

mx(fi, J) - lira sup pN,~,j(]H~N)[ ) (1.8) 
N$ce  

The explicit construction of the infinite-volume Gibbs measure and an 
investigation of its formal structure will be presented in a follow-up 
paper. (6) 

This model is the same as the one considered in ref. 7; the only 
differences are the assumptions on the random variables J~(H). In the 
random bond situation one was interested essentially in Jx(H) that were 
i.i.d.r.v. In fact it had been assumed that for fixed x the family {Jx(H)}H~iz 
forms a stationary stochastic process, and that these processes are 
independent for different values ofx.  Moreover, ref. 7 assumed Gaussian 
bounds on the distributions, i.e., 

P[IJx(H)I > 6] ~< e -a2/2~ (1.9) 
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for 3 ~> a, with a small. In the random field situation, with Jx(H) given by 
(1.3), these conditions are of course not satisfied. With ~x,h, say, i.i.d. 
Gaussian random variables, one gets Gaussian bounds on the Jx(H) that 
depend on H, 

P[ IJx(H)l > ~] ~ e-~2/2~ IHI (1.10) 

and of course the processes {Jx(H)} ~/~ z are not stationary. It will turn out 
in our analysis that in this situationl it is not enough to consider the Jx(H) 
alone, but we will have to control the stochastic processes formed by the 
difference variables 

Dx(H, H') - Jx(H) -- Jx(H') (1.11) 

We will require two pieces of information: First, that for given x the family 
{Dx(H, H ' ) } H , / r ~  forms a stochastic process that is stationary under 
the simultaneous shift (H,H' ) - -r (H+k,H'+k) ,  for k~7/. Again these 
processes will be independent for different x. Second, we need bounds on 
the distributions of the Dx(H, H') of the form 

P[Dx(H,H')>a]<~exp 2G2 I H _ H ,  I (1.12) 

Note that (1.12) implies the same bound on P[Dx(H, H ' ) < - 6 ]  since 
Dx(H, H') = -Dx(H', H). These conditions are of course satisfied for i.i.d. 
random fields ~x,h that satisfy Gaussian bounds of the form (1.9). The 
difficulty we will have to cope with is to preserve such conditions in 
the course of the renormalization process. In fact, we will see that it is 
impossible to maintain the purely Gaussian bounds on the probabilities, as 
the renormalization necessarily introduces terms that decay only exponen- 
tially with 3. It is thus natural to enlarge the class of admissible random 
variables from the start by adding terms e x p ( - 6 / a  2) to the left-hand sides 
of (1.10) and (1.12). This then means that our results also apply in the case 
of exponentially distributed random fields. 

The precise formulation of our main result is given in the following 
theorem. 

Theorem 1. Let {Jx(H)}H~ ~, for x~  7/a, be independent stochastic 
processes such that the associated difference processes {Dx(H, H')} l-l,Z-l,~:~ 
are stationary under simultaneous shifts in H and H'. Assume, moreover, 
that 

~_D(H,H')=O for all H,H'~7/ (1.13) 
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and that for all 5 > 0 and all H # H ' e  7/, 

5 2 

Then for d >  2, there exist flo < 0% ao > 0, and L 0 < oo and finite positive 
constants c I and c2 such that for all fl >t rio, o-~< a0, and L/> L o, 

p[m~(fl, J)>6]<<min {exp(- ~7),exp(--~) } (1.15) 

for all 5 > e c2~ and for all x e Z a, where 5 = Cl a. 

Remark 1. Note that we give conditions only on the difference 
processes of the Jx(H). But these specify the Jx up to an H-independent 
random variable which has no effect on the thermodynamics and therefore 
can conveniently be chosen as to make J~ (0 )=  0. 

Remark 2. The restriction of the range of the 6's for which (1.16) 
holds takes into account thermal fluctuations that are present also in the 
absence of disorder. Notice that (1.15) implies that 

Emx(fl, J) <~ O (max {exp (-  -~), exp(-c2~) } ) (1.16) 

The remainder of this paper is organized as follows: In Section 2 
we derive the renormalization group transformations and the resulting 
formulas for mx(~, J). In Section 3 we analyze these transformations in the 
case /~ = oo, which is more transparent and serves to illustrate the main 
probabilistic aspects of this problem, and prove a corresponding weaker 
form of Theorem 1. In Section 4 the full proof  of Theorem 1 is presented. 

2. T H E  R E N O R M A L I Z A T I O N  G R O U P  T R A N S F O R M A T I O N  

In this section we derive the formal tools to analyze our model, namely 
the renormalization group transformations. To do so, as in the random 
bond model, (7) we compute the partition function (1.7) by a successive 
summation over the different hierarchies of towers. This maps the model 
with N hierarchies to an identical one with N - 1  hierarchies with a 
renormalized temperature and a renormalized probability distributions for 
the J 's .  We recall the first steps from ref. 7: 
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Zu(fl, J) = Z "'" Z exp~--f l  }" Z - h(")y. L(d 1). 
{h~N)} {h~l)) n = 1 Yn 

(Ihx [ + J~(H~m)) 
~h~~ 

{ ]} = 2 " " 2 e x p  --fiLed-') -y,h(m L(d-1)"+~,Yy(H(y N-l)) 
h(N 1) h~0) n = 0  y -y 

=ZN l(fi(l),Y) (2.1) 

where 

ex.  + (2.2) 

and 

fi(1)= flL d- 1 (2.3) 

We find it convenient to introduce the function q~: •z __. ~ by 

1 
~ ( { a , } n ~ ) = - ~ l n  Z e ~a~ (2.4) 

n ~ Z  

Note that q~ has the natural physical interpretation of the free energy of 
the sequence {an}. Using this definition, we can write (2.2) as 

1 
Yy(H)=Ld_l ~ q~({lhl+Jx(H+h)}h~z) (2.5) 

x c L y  

As in the case of the random bond model, it is easy to show that under the 
conditions of Theorem 1, the Yy(H) are well-defined, almost surely finite 
random variables. [Note that this is also true for the partition function 
Zu(fl, J) itself.] A crucial step in ref. 7 was to subtract from the Yy(H) their 
mean, which, due to the assumption of stationarity of the original random 
variables, was independent of H. This condition is not satisfied in our case, 
and at first glance it does not appear obvious that the Yy(H) have an 
H-independent mean (note that their distribution depends strongly on H!). 
If this were indeed so, we could not carry out our renormalization 
program, since these means would grow without bounds. However, the 
assumption made in Theorem 1 that the difference process Dx(H, H') 
associated to the Jx(H) be stationary with respect to diagonal shifts will 
guarantee that the means of the renormalized .7 are H independent. This is 
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one of the reasons we have to control not only the renormalization of the 
aT, but also, and in particular, that of their differences. 

Note that from (2.2) we obtain easily the following equation for the 
renormalized D~ t )(H, H') =- Jy(H) - Jy(H- ' )." 

1 
Dyl) (H,H' ) -Ld  1 ~ { D x ( H , H ' ) + q ~ ( { I h l + D x ( H + h , H ) } h ~ )  

x~Ly 

- o5 ({ Ihl + Dx(H'+ h, H')}h~z) } (2.6) 

One sees that by the assumption of stationarity for the D(H, H'), 
( t)  Dy (H, H') has expectation equal to zero. It is thus convenient to define 

( 1 )  _ _  ( 1 )  J~ (H) = Dy (H, 0) (2.7) 

by which the energy of a flat surface in the renormalized model given by 
the J~I)(H) is set to be zero. The J(yl)(H) now have the property to be 
centered, while the recursion (2.1) for the partition function takes the form 

Zu(fl, J)=exp {fl(1) ~ Jy(O)} ZN_i(fl(1),J ~t)) 
Y~ YI 

(2.8) 

The factor in front of Z N_ 1 on the right-hand side is of course just a 
(random) constant contributing to the free energy but not to expectation 
values. 

Note that Eq. (2.6) makes manifest that the (1) Dy (H, H')  form again a 
stationary process with respect to diagonal shifts, and thus all conditions 
to iterate this procedure will easily be seen to be satisfied, excepting of 
course the exponential bounds on the new distributions, whose proof will 
constitute the bulk of this paper. The set of recursive equations we obtain 
is now 

Z N ( ~ , d ) ~ - - e x p f ~ = l ~ ( k ) y ~ y k ' ~ ( k - 1 ) ( O ) } Z N - n ( ~ ( n ) , j ( n ) )  (2.9) 

fl(') = L (a- 1)'fl (2.10) 

1 
- {D x (H, H')+ ~e(.,({Ihl +D(')(H+h, H ) } h ~ )  D(7 +t)(H,H') g d - 1  2 (n) 

x ~ .Lf y 

-- q~B(,)({lhl +D(~')(U'+h, U')}h~2~)} (2.11) 

J,(~ = (') _ Dy (U, 0) (2.12) 
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The meaning of the J is similar as in the first step of the iteration. Now 
we can carry on as in the random bond case to get a recursion equation 
for the mean height. Note first that by the triangle inequality 

N 
I~N.~.s(]H~N)]) <~ ~ t~v.~.g(]h~)-,,xl) (2.13) 

n=O 

By summing over the h's of the first n -  1 hierarchies, we obtain 

(n) ~N,~,g(Ihy I) 

1 

- J) E ' Z 

xexp --fl [h~)] L(d-1)k+ 2 Jx(H(x 'r 
n 0 x ~  YO 

1 
=ZN_.(/?~.), jr Z "'" Z Ih~~ 

{ [2 (n) ( N - - n )  x exp - f l  (~ 2 Ih~)l L(a-l~(k-~)+ ~ J~ (Hx (2.14) 
n Yk x,~ Yn 

On the nth hierarchy, for y'  # y, the sums over the h(y~, ) can be carried out 
in the same way as before, but the sum over h(y ") has to be treated 
separately. Defining 

< h(,, ) ) .  (H)=_Z h (exp{-flr [ +J~")(H+h)]})thl (2.15) 
-Y Zh exp{ -flcn)[lh I + J(y")(H+ h)] } 

we get 

that 

1 
I~N,~,j(IhCf)l)--7 tin.+ +1)) 

Z - ' N - - n - - l ~ , P  l) g(n 

X E "' '  E <]h(n)i>n ( g ( N - n - 1 ) )  

x exp -fl~"+')  2 2 ]hy~)[ L(d--l)(k--n--1) 
k=n+l Yk 

1 (N--n--l) t + ~ J~+ (H x ) (2.16) 
x ~  Yn+I 

Continuing to sum over the hierarchies as before, we obtain finally 

(n) #N,~,j(lhy [ )=  (Ih(yn)[ )N (0) (2.17) 
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where for m > n, ([h(y~)l >m (H) is defined recursively as 

< Ih~')l >m (H) 
2h (exp{ -fl(m)[lh I + jr + h)] })( h (') 

= - v  > m - - I  (H+h) (2.18) 
Eh exp{-~(m)EIh[ +J(y")(H+h)]} 

This recursive scheme will prove useful to convert the probabilistic bounds 
on the sequences of random variables J~')(H) into bounds on the 

. H ( N )  probabilities for the random variables #/,~,s( ~ ,. The main work of the 
next sections will thus consist in controlling the probability distributions of 
the stochastic processes (') ny  (U, H'). 

3. THE R E N O R M A L I Z A T I O N  GROUP FLOW AT ZERO 
T E M P E R A T U R E  

As a first step we now treat the case where fl = ~ .  Here the function 
q)~ introduced in Section 2.4 simply becomes the infimum, i.e., 

lira cb~({a.} .~)= inf (a.) (3.1) 

provided only {a.} is such that ~ ( { a . } . ~ g ) >  -oo  for fl large enough, a 
condition that will be satisfied almost surely for all sequences appearing 
in the sequal. This makes the renormalization group transformations 
particularly transparent: Equation (2.11) thus may be written in the form 

1 
{D x (H, H')+ inf (]hl + (') DT+I)(H,H')=Ld_I  ~ (") D~ (H+h,H))  

- x E ~ f y  h c ~ -  

(") H' - inf ([h[ + D  x ( + h , H ' ) ) }  (3.2) 
h ~ _  

These recursions have the following property: 

P r o p o s i t i o n  3.1. Let ~--x~l)(')/H, , H ' ) } H , / r ~  be difference processes, 
i.e., let for all H, H', H " ~  Z 

(') (3.3) --xD(')(H,--, H') 4-D(')IH'- --x , - - ,  H")=Dx (H,H") 

let the processes be independent for different x, stationary with respect to 
the diagonal shift ( H , H ' ) ~ ( H + k , H ' + k )  for k e Z ,  (') IZD~ (H, H')  = 0, 
and satisfy, for all 5 > 0, 

(') -6 ]~<exp 2az[~--_H,[. +exp  - P[D x (H, H')  < (3.4) 
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Then, {D(~'+~)(H, H')}~,~/,~z is again a difference process, stationary with 
respect to diagonal translation, s H')=0, and, for all d > 2 ,  if L 
is sufficiently large and ~, small enough, there exists a constant c < 1, 
independent of a , ,  such that with o-, +~= ca,, for all 6 > 0, 

6 2 
P[D(x+'+ I)(H, H') < -~J <~ exp ( -  2(z2,,+ I -(-H_ H,, ) 

+ exp 5- " (3.5) 
0"n+  l 

Proof. Stationarity of the process D~ =+ ~)(H, H')  is obvious, since the 
recursion (3.2) is of the form [use (3.3)] 

! 
D~"+~)(H, H')-Ld_ ~ ~ {D~'~ H ' ) +  h~xinf (Ihl +D~")(H+h, H')) 

x E -~'y 

- inf (Ihl (") H' - D  x (H, +h))}  
h r  

= F({D(')(H + h, H '  + h'))h,h,~ z . x ~ y  ) (3.6) 

with F a measurable function from ~z2 ~ ~ (see, e.g., ref. 19). Moreover, 
using the stationarity of the (') D x (H, H'), one sees that 

FD(.+I)(H,H,) (.) -- ED x (S, S ' ) +  IF inf ([hl +n(')(H+h, S)) 
h E Z  

E inf ([hi (') ' - + D  x ( H  + h , H ' ) )  
h ~ Z  

= 0  (3.7) 

The fact that D(~'+~)(H, H') is a difference process also is a trivial conse- 
quence of the induction hypothesis and the structure of Eq. (3.2). 

The real task of the proof is thus to show the bounds (3.5) for the 
renormalized process. Note that by stationarity it is enough to consider 
D(y'+I)(H, O)=-J(y'+l)(H). We rewrite (3.2) for them in the form 

1 
('+ ~ inf ([hi +J(~')(H+h)) Jy 1)( H)=L a-lx~zeyh~ 

1 
inf ([h[ +J~')(h)) (3.8) 

L d - 1  x ~  ,Lfy h e ~  

Now 
(n) ~ (n) inf ( [h[+J~ (h))..~J~ ( 0 ) - 0  

h e / /  
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so that we may work with the bound 

1 
Jy~'+n(H)~>~-j~ ~ inf (1hi +J~')(H+h)) (3.9) 

x ~ L P y  h ~ ~_ 

Our proof will consist of two steps: First we show that a bound of the form 
(3.4), with slightly enlarged on, for & > o-, till 1/2, holds for the variables 

Ix(H) = inf (Ihl + J~(')(H+ h)) (3.10) 
h e n  

We then show that such bounds extend to all positive values of & and that 
summing over independent Ix(H) and dividing by the factor L d- 1 finally 
reduces the variances in the desired way, which yields (3.5). 

We start by separating the contributions of "small" and "large" h's in 
the infimum, 

P[Ix(H)< --6] <. P [  inf (Ihl +J(x')(H+h))< -6] 
Lhl/> IHI 

+ P [  inf (Ihl +Jf)(H+h))< --3] (3.11) 
Ihl < IHI 

The first term in (3.11) causes no problems: 

P [  inf (Ihl +J(xn)(H+h))< -3] 
[hi/> IHI 

~< ~ P[Ihl§247 -6] 
lhl I> IHI 

~< Z [exp(- (&+lhl)2~ &~ihll~l 
lhl~>lHl 2o2. IH+hl/+exp( o] ]j (3.12) 

Using that for Ihl/> [HI 

oxp( 

we obtain for (3.11) 

(6 § lhl )2 
2o~ IN+hi) ~exp ( 

~< exp ( 

P [  inf 
Ihl/> IHI 

2& ahl + Ihl 2 

2o.Z(lHI + Ihlj ) 
& Ihl~ 

(Ihl + Jx(')(H+ h)) < -&]  

(3.13) 

f ~ exp -- 4azj ~< exp - 2ag-2~-~ 2 Ihl/> m'l 

+ exp -- ~ exp -- 
ihl ~> iHi On 2 ] 

(3.i4) 
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Observe that the inequality (3.13) introduces an exponential term in our 
bounds, even if we were to start from purely Gaussian ones. This is not an 
artefact of our estimation, but a true effect. To see why, note that 

(6+  ihl)2 "~ ( (6+  Ihl)2 "~ 
E exp ~'~ sup exp -- 2o-~ IH+hl/ Ihl/> IHI [hi/> Inl 

 exp( -g~ / (3.15) 

if 6 > 3 IHI. Thus, purely Gaussian bounds on the probabilities are not 
stable under the renormalization process, in contrast to the random bond 
case. 

Now the sums occurring in (3.14) are all convergent and in fact 
bounded uniformly in an (for an small enough) by constants of the order 
of exp(-IHl/4a2) .  This yields the desired bounds for the first term in 
(3.11). 

One might try to apply similar estimates to bound the second term in 
(3.11). This gives 

P[  inf (Ihl +J(~n)(g+h))< -6] 
Ihl < IHI 

~< ~ P[Ihl +J~n)(n+h)< -6] (3.16) 
Ihl < Inl 

and using 

exp ( 
( 6 +  Ihl) 2 ~ / 62+  [hl~ 
. . . .  / ~ < e x p |  2a 21H + hlj \ 2a2( ]Hl+lh l ) J  

6 2 

~<exp ( -  4a~-(HI 4a~ Inl) 
one would get 

P [  inf 
Ihl < IHI 

(Ihl + J~")(H + h)) < -61 

(3.17) 

6 2 / Ihl 2 
tnl exp [ 

~ < e x p ( 4 a ~ i H i )  ihl <~ 4a:  IH]) 

6 2 e x p - - -  (3.18) +exp  - ~ Ihl<m'l a~J 

Unfortunately, the first sum in (3.18) is of order a ,  IHI 1/2, which can be 
arbitrarily large. Note that this is not an artefact of the bound (3.17), but 
arises also if we insert the left-hand side of (3.17) into (3.16). It is thus 
the fact that we estimate the probability of the infimum by a sum of 
probabilities in (3.16) that introduces an unacceptably large error if [HI is 
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too large. For  [HI such that [HI a] ~> 1, we must therefore improve on the 
estimate (3.16). 

Now (3.16) would be exact if the events occurring in the infimum were 
disjoint; thus, to improve on it we need to use information on the correla- 
tion of these events, i.e., on the correlations between the J(~n~(H) for 
neighboring heights H. This is another reason why we need to consider the 
difference process (n) D x (H, H ' )  all the time; had we started to renormalize 
just the original Jx(H) and kept track only on bounds of the form (1.10), 
(l.11), as was done in the random bond model, we would be stuck at this 
point. 

The idea to improve on (3.16) is now to group the events in the 
infimum into blocks in such a way that events within a block are strongly 
correlated, while the number of blocks is sufficiently small to allow us to 
bound the probability of infimum over all heights by a sum over blocks of 
the probabilities of the infima taken over the h in one block. To be precise, 
let us assume that a 2 [HI > 1. Consider a finite family of subsets B i~  7/ 
such that their union contains { - H , - H + I  ..... H}. Let bieBi denote 
some fixed representative element of each block that we choose such that 
for all hsB~, [hi/> [bi[. Then 

P[- inf ([hi +J(x")(H+h))< -6] 
Ih[ < r i l l  

~<~ P[-inf (]hi +J(~n~(H+h))< -g] 
i h ~ B i  

<<- Z ~ [J~")(H + b,) < -(6 + I b,I) + e,] 
i 

+ ~  P [  inf (J(x")(H+h)-J~")(H+bi)+ thl- Ib~l)< -e,.] (3.19) 
i h ~ B i  

for arbitrary ei > 0 to be specified later. In the last line of (3.19) we can now 
use (3.3) to write 

J(xn)(H+h)-J~x")(H+bi)=D(xn)(H+h, H+bi) (3.20) 

Also, by our choice of hi, the term [ h i -  [b~[ in (3.19) is always positive and 
may be dropped. Finally, estimating the probability of the infima in the last 
line of (3.19) by a sum, we arrive at the bound 

P [  inf ( [ h l + J f ) ( H + h ) ) < - 6 ]  
Ihl < IHI 

<~i { p[J~")(g+be)< -(6+[bil)+ai] 

+ ~ P[D~')(H+h'H+b~)<-a~]t (3.21) 
h E B  i ) 
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We now choose the 8~ as e~= (6 + Ibel)/2. Using our assumptions on the 
distributions (3.5), we may further write 

P[ inf ( I h l + J ~ n ) ( n + h ) ) < - 6 ]  
[hi < In] 

~< ~/{exp ( -  8a:(lHl(6+lbil~il))+exp ( +  6+-I--bil"~2a: J 

+ IBi[ [exp ( ( 6  + ]bi[)2~ ( 6 +- I--bi[.'~]'~ 
i ~  ~-~ ] + exp \ 2o2,, ,]_lJ (3.22) 

where in the estimation of the second term in (3.21) we have used that 
maxh~B, Ih -be[ ~< IBil. We now have to choose our family of blocks in such 
a way that (3.22) gives a useful bound. It turns out that for o, IHlm< 
6 < IHI we may choose 

Bi= [i[6], (i+ 1)[6]] ~71 (3.23) 

where [6] denotes the largest integer less than 6. Noticing that [be[ ~< IHI 
for all blocks, IBil <~6<~ IHI, and 6/2<... [6] ,.<6 (remember that 6>i 1), we 
finally obtain from (3.22) 

P[ inf ( I h l + J 2 " ) ( H + h ) ) < - 6 ]  
Ihl < IHl 

~<2 ~ {exp ( ~2(1+ i/2)2"~} ( 6(1+i/2)'~ 
i~>0 1-~a2~-~ / + e x p \  ---22a~ !/ 

+ [ 6 l l e x p (  62(1+i/2)2"~ ) + e x p (  6(1+i/2)'~q'(_2~[ JJJ (3.24) 

which is easily checked to be of the desired form. If 6 is larger than [HI, 
we need only the one block { -  H ..... H} to get the desired result. Putting 
together (3.8), (3.14), (3.24), we thus obtain bounds of the form 

6 2 
(3.25) 

for all 6/> o' I H[ 1/2, where a' is of the order of a. The proof of Proposi- 
tion 3.1 will now follow from the following result. 

Lemma 3.2. Let  {Xi}i~l , . . . ,  N be an independent family of random 
variables, such that, for some positive T, where z ~< % < 1: 

(i) EXi = O. 
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(ii) The following conditions hold: 

62 
P [Xi > 5] ~.< exp ( -  -~--) + exp ( - -  ! )  

P[Xi  < - 5 ]  -..< exp ( -  --}-) + exp ( -  ! )  

(3.26) 

for all 6/> 1. 
Then, if X = (l/M)'~-~?= 1 Xi, there exists a constant c >  1 independent 

of N, M, z, such that for all 5 > 0, 

P I X  > 6 ] ~< exp( --62/2ff 2) + e x p ( - a / ' g )  

P [ X <  --6] ~< exp( --  62/2~ 2) q- exp( - ~5/.g) 
(3.27) 

where 

cx/-N and f = - ~ v  
~ = M  

P r o o f .  To prove the lemma, we first derive from (3.26) bounds on 
the Laplace transform of the Xi. From these, (3.27) will follow from a 
standard application of the exponential Markov inequality3 ~9) 

We will only prove the bound on P [ X > 6 ] ;  the other one follows 
symmetrically. Thus, it is enough to bound the Laplace transform Ee 'xl for 
t > 0. We will distinguish the cases t ~> 1 and t < 1. Let first t ~> 1. We have 

fc~3 
Ee ~x~ = t e~xp [ X~ >t x ]  d x  

1 co e' d +tf, e'xpfX>x]dx 

Loo 
<~ e t + t ~ etXe X2/2 dx -]- t et~e ~/~ d x  

te - ( 1/z t ) 
~< e t + (21t) 1/2 te '2/2 + - -  (3.28) 

1/z -- t 

For  t <  1/cZ~z with any c 1 > l we have for the last term in (3.28) 

t e -O /~  t) l - 1/c~)(1/z) ~<-ST--~ e -(1 
1/z --  t c~ -- 1 

(3.29) 

822/69/1-2-7 
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which is bounded uniformly by a constant, since z ~ 1. Since t>~ 1, we 
conclude that there is a constant c2 > 1 such that 

Ee 'xi <~ e c~t2/2 for all 1 < t <~ 1/c~z (3.30) 

For  t < l w e u s e  

t 2 Ee'X'<~ 1 + ~  (E[X~Ix,<o ] + IFEX~e'X'Ix,>~o]) 

<.exPE~(E[X~ix,<o]+E[y~eXqx,>~o])] (3.31) 

where in the last line we have estimated the second term in the argument 
of the exponential by its value for t = 1. From the bounds (3.26) we can 
now obtain uniform estimates on the expectations in the exponential. For  
example, for the second term we may write 

E[XZeXqxi>~o] 

L = -~x (x2eX) P EXi ~ x l  dx 

<~ -~x (x2eX) dx q- dx (x2eX)(e- x2/2 -k- e dx (3.32) 
1 

which is again bounded uniformly by a some constant, since z <~ %. For  
rF[X2~lx,<o] we proceed in the same way to see that there is a constant Ca 
such that 

~_etXi<~e c~t2/2 for all t <  1 (3.33) 

Putting together the two ranges for t and choosing c = max{c1, c2, c3}, we 
obtain from (3.30) and (3.33) 

Ee 'x' ~ e c2t2/2 for all t <~ l/c2z (3.34) 

To prove the bounds (3.27), it is sufficient to consider only the case M = 1, 
since the general case follows by simple rescaling. For  

N 

Z -  ~ Xi (3.35) 
i = 1  

we have from the exponential Markov  inequality 

P [ Z > f i ] ~ < e  '~_e'Z<~e t':SeC2t2N/2 foral l  t<~l/c2z (3.36) 
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where we have used the independence of the Xi. The bound on the 
probability can now be obtained by choosing t optimal within the allowed 
range. For  6 < N/r we take t * =  6/eZN< 1/c2"c to obtain 

[P[ Z > 6] ~ e a2/2c2N (3.37) 

while for 6 ~> N/r with t* = 1/C2"r we have from (3.36) 

P [ Z >  6] ~ e  6/2c2T (3.38) 

which concludes the proof of Lemma 3.2. | 

The proof of Proposition 3.1 is now finished by using (3.25) and 
Lemma 3.2 for the independent family of centered random variables 

1 
Xx--=t  n iN] 1/2 [-2nf (]h] q-- J(xn)(H q- h ) ) -  i n f  (th] q- J(xn)(h))] (3.39) 

for x ~ Y y ,  and with M = L  a 1. Note that the variance of the sum 
variables is then scaled by a factor cL a/2 d+ 1, which can be made smaller 
than one by choosing L sufficiently large, provided d > 2. It is at this point 
only where the dimensionality of the system enters the proof. | 

We are now ready to estimate the expectation of the height mx(J ) = 
mx(oe, J) of the surface and thus to prove Theorem 1 in the special case 
fl = 0% that is, we show the following result. 

P r o p o s i t i o n  3.3. Let { J x ( H ) } u ~  be stochastic processes as 
specified in Theorem 1. Then there exist a o > 0 ,  Lo <  0% and a finite, 
positive constant c such that for all a ~< ao and L >~ L0, 

P[rnx(J ) > 6] ~< exp(--6/ff 2) (3.40) 

for all 6 > 0 and for all x e 7/a, where ff = ca. 

Proof. Our proof will use, of course, the recursive scheme introduced 
in Section 2. We will first show that for all N, H and for all 6 > 0 

~2~[ < h(n) >N (H) > 6] ~< exp( -- 6/a'n 2) --y (3.41) 

with a'n = dan, where c' is a constant independent of a, n, and N. These 
bounds can then easily be summed over n to yield (3.40). 

In order to prove (3.41), we have to control the recursion relation 
(2.18). For  zero temperature, this recursion simplifies considerably, since 
then the sum in (2.18) is then given by only one term. Let thus h*(n)(H) 
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denote the random variable with values in Z which is given by the h 
realizing the inf in the definition of Iy(H): 

inf (Ih[ +J~")(H+h))= Ih*(")(H)l +J~n)[H+h*(")(H)] (3.42) 
h ~ _  

It follows easily from the bounds we obtain from Proposition 3.1 that a 
solution of (3.42) exists almost surely. Under some weak assumption on 
the distributions of the Jx(H) (continuity is, for instance, a sufficient condi- 
tion) it is unique a.s., which we will assume here. (This assumption is, 
however, not really necessary and we will not make it in the proof of 
Theorem 1 given in the next section.) 

We may now rewrite (2.18) in the case/~ = ~ as 

(Ih(yn) I )~ ( H ) =  Ih*(m)(H)l (3.43) 

(th~)l >m (H)- Ih*(m)(H) l  + <lh~)l >(,~ 1) [H+h* (m) (H) ]  for m > n  

Note that, due to stationarity, the (Ih~n)l)m (H) have the same distribution 
for all H e  7/. Thus we begin the estimation of (3.43) with 

0ZElh*(')(n)l > 6 ]  ~< DZE3h ~ Z, Ihl >6: Ihl +J~")(H+h)<J~y")(n)] 

~< ~ P (") - Ih l ]  [Dy ( H + h , H ) <  
Ihl > 6 

~<,h~alexp(  2a-h~221h()+exp(-Ihl']Ta]JJ 

~<exp ( -  2~2 ) (3.44) 

where ~, = cla ,  (with cl > 1 being some constant). This bound is already 
of the form (3.41). Next, we introduce a partition of our probability space 
according to the value that h*(")(H) takes, that is, we write the second line 
in (3.43) as 

P[  (]h~yn)l)m (n)  > 3] 

~<Pl-(lh~yn)l)m l ( H ) > f i A h * ( m ) ( n ) = 0 ]  

+ ~ D[(lh~ynl[~ m l(H+h)>b/\h*(m)(H)=h] (3.45) 
h ~ O  

Now we use the simple fact that P [ A n  B] ~< min { P [A ], P [B] } and the 
estimate [see (3.44)] 

P [h*(m)(H) = hi <~ exp( -h/~ 2) (3.46) 
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to arrive at 

P 1- (IhSn~l)m (H) > r 

~< P[  (Ih(y')l }m-1 (H) > 6] 

+ y, r a in{P[ (  h (") },,-1 (H+h)>a],exp(-h/e2)} (3.47) - -y  

h ~ 0  

All that is now left to do is to iterate this bound, starting with m = n up 
to r e = N ,  the initial bound given by (3.42). This is the subject of the 
following lemma: 

I_emma 3.4. Let the sequence {qe}k>__o be recursively defined by 

q k + ! = q k +  Y, min qk, exp y 2 j j  
h~=0 

where for some 0 < c < 1 

~& = ck7 (3.49) 

Then, if 7 and qo are sufficiently small, there is a constant 0 < c ' <  1, 
independent of ~ and qo, such that 

qk ~< q;' (3.50) 

Assuming this lemma, the proof of Proposition 3.3 is now finished: 
Just note that if we set 

qo=P[ lh*(n ) (H)[  > 6 ] ,  ~k=~n+k+l=CkdlCn+l{7 (3.51) 

then (3.47) implies that 

and thus 

P[( h I") ) . + k ( H ) > a ] < ~ q k  - -y  (3.52) 

- c 6 /2%)  (3.53) p [  (ih(yn)l)m (H) > 6] ~< exp ( , -2 

since ~,, and subsequently qo are assumed to be small. This concludes the 
proof of Proposition 3.3. | 

Let us finally give the proof of Lemma 3.4: 

Proof.  Noticing that qk is increasing while 7k is going to zero under 
iteration of (3.48), it is clear that there will be a k 0 such that for k >/ko for 
all h in the sum the minimum will be given by the second term. We will 
have to estimate (3.48) for k > ko, for k < ko, and estimate the value of k0 
itself. 
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If we assume that j~ko, i.e., qk~>exp(-1/?2),  we have from the 
iteration of (3.48) for all m ~> j 

qm<~qj+2 ~ exp -- 
t = j  h = l  

m 1 1 

= q j + 2  Z e x p ( 1 / ~ ) - i  
l = j  

~c2qj (3.54) 

for 7 sufficiently small with some constant c2 > 1. Hence, if qo is larger than 
exp(-1/72) ,  we have already proven (3.41). 

Let us now assume qo ~< e x p ( -  1/72). Obviously, the number of terms 
in the sum (3.48) for which qk realizes the minimum can be computed 
simply by solving qo=exp(-h/7~) for h, so that 

qj+ l <~ qj + 2# {h >~ l, qj <<. exp ( -  ~ )  } + c2qj 

~< c3(1 - 7 ~  in qj) qj (3.55) 

with some new constant c3 > 1. 
Now, since qk is increasing, ko is bounded by the minimal k such that 

qo <~ exp( - 1/7~), which we denote by/~. Estimating the qj in the logarithm 
of (3.55) by q0, it follows that 

q~<~c~3 ]--I ( 1 - 7 ~ l n q 0 ) q 0  (3.56) 
l = 1  

To bound the terms appearing in this expression, note first that by the 
definition of/~ we see that for 7 small enough 

with c 4 > 0. Further, with yet another constant c5 > 0, 

1~ ( 1 - 7 ~  In qo) ~<exp ~ In qo) 
/ = 1  l 

~<exp(--  ~ 7~lnqo)~<qo c5~ 
/ = 1  

(3.58) 
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Finally, putting together (3.54) and (3.56)-(3.58), we get for all k~>0 

q,~ ~ ce (ln l t C4 qlo-~,~ '2 
\ qo/ 

~< qo ~ (3.59) 

with 0 < c6 < 1, which is valid for ? and qo sufficiently small. This proves 
Lemma 3.4. | 

4. T H E  R E N O R M A L I Z A T I O N  G R O U P  F L O W  AT FINITE 
T E M  P E R A T U  R E 

In this section we present the complete proof of Theorem 1, that is, we 
treat the case/~ < co. The structure of the proof is essentially the same as 
in the previous section and we will make frequent reference to it, while 
stressing the points that require modifications. 

We begin by stating the analogue of Proposition 3.1, as follows. 

{D x (H,H ' )}H.H,~ ,  for x e Z  d, be as Proposi t ion  4.1.  Let (') 
specified in Proposition 3.1, i.e., centered, stationary difference processes 
obeying 

(') - 6 ]  ~<exp - i +exp ) P [D  x (H, H')  < 2a2]H_H,.  -- (4.1 

Then, {D(x~+I)(H,H')}H.H.eZ are again centered stationary difference 
processes and, for d > 2, if L and fin are large enough and an small enough, 
there exists a constant c < 1, independent of L, fl(n), and an such that with 
~n+l = co'., for all 6 > 0 ,  

P[D(x'+~)(H, H ' ) <  - 6 ]  ~<exp - 2cr2.+1 I H - H ' I  +exp cr z . +  (4.2) 

ProoL That '~(n+l)tH H')  are stationary, centered difference pro- 
/ J x  ~ ' 

cesses follows from the same arguments as in the proof of Proposition 3.1. 
To show the bounds (4.2) for the renormalized process, it suffices thus 

(n+l) 0 ) -  ("+ again to consider Dy (H, =Jy 1)(H). Exactly as in Section2, we 
obtain for them the inequality 

1 

x 6 ,,LP y 

qs~(~,({ Ih I +J(")(H+h)}h~z) (4.3) 
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We thus are left to control the distribution of the variables 
q~,.~( { ]hi + J~(~)(H + h) ) h ~ z). for which we separate again the contributions 
of "small" and "large" h's to the sum: 

P[~(~ Ihl + J~")(H+ h)}h~z) < --6] 

= P [ 2 exp{-/~'")(Ihl + J~"(H + h ) )}>  e~~ 
t -h ~ zZ / 

<~P[ ~ exp{--~(m(,hl+J,n)(H+h)))>P e/l(")'~] 
Ihl >~ IHI 

+p[ ~ exp{-fl(n)(lhl+J~")(H+h))}>(1-p,e ~'")'] (4.4) 
Ihl < Inl  

for any 0 < p <  1. To bound the probability of the sum by the sum of 
probabilities, we introduce the constants (this choice of constants is to a 
large degree arbitrary and not necessarily optimal) 

e Ihl 
~h = (4.5) 

K 

with K chosen such that Z h ~  c~h = 1. For the first term in (4.4) we write 

P [ihl~lHl exp{-fl(m(lhl + J(x~)(H + h))} > P e~"'~] 

~< 2 P[exp{-/~(")(Ihl +J~")(H+h))}>P~ e~"'a] 
Ihl/> Inl  

<~ ~ P J(x~)(g+h)<-6 - 1 - ~ - ~  Ihl+~-~51n (4.6) 
Ihl ~> Inl  

We note that. given any fixed 0 < c~ < 1. 

1 
( 1 -  fl-~3~) ) ]hi-~7-~ in (~K)>~ c1 ,hi (4.7, 

for all h # O, if 

~(n) >1 ln(K/p) -- 1 (4.8) 
1 - c l  

That means that for such/~(n) we have 

P[ ~ exp{-fl(m(lhl+J~(H+h))}>Pe ~'~] 
Ihl/> IHI 

<<. ~ P[J~")(H+h)<--(6+cllhl)] (4.9) 
Ihl ~ IHI 
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Clearly, in (4.6) the temperature dependence has manifested itself only in 
that the constant c 1 has become slightly smaller than 1. Obviously this 
leaves us now with the same computations as in the case/~ = oo. 

To estimate the second term in (4.4), we distinguish as in Section 2 the 
2 cases of large and small [HI: In the case a n IHI ~ 1 we write, as in (4.9), 

P [  ~ exp{-fl(")(lhl+J(~n)(H+h))}>(l-p)e ~"~a] 
[h[ < Ig [  

~< 2 P[Jx~")( H +  h) < - ( 6  + c 1 Ihl)] (4.10) 
Ihl < IN[ 

From here on we may proceed as in (3.17) and (3.18). 
For a~ [HI > 1 we use the blocking with the same family of blocks 

Bi c Z as in Section 3. Then 

P [  ~ exp{-fl(n)(lhl+J(fl)(H+h))}>(1-p)e~a] 
Ihl < IHI 

<<'~ P l ~ exp{--fl(n'(lhl + Jf)(H+h))}>(1-P)c~ie'("la] 
i heB i  

~<~ P [tb~l +Jf)(H+b~) 
i L 

1 
/3(n ) In 2 exp{ -fll")(J~n)(H+ h)-J~")(H+ b~) + Ih[ - Ib ; I )}  

he  Bi 

< - 6  ln((1-p)c~)]/3(") (4.11) 

with e~ being some new positive constants with Y~ eg = 1. Now we separate 
the random variables on the l.h.s in the probability by introducing ei ~> 0, 

Pl ~" exp{--fl('~ 
Ihl < t i l l  

-fl x ( + ,H+bi)}>e ~l')~ 
L h ~ B i  

In tBtl ) + 2 P[D(x")(H+h,H+bi) < - e ~ ] +  o---d~-~) ~ (4.12) 
h~Bi P )  
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We now choose the ei such that the r.h.s, of the inequalities in the 
probabilities in (4.11) are the same, that is, 

1 (  ln((1 - p )  ~i IBi[!) (4.13) 

and further set 

ei = e-Ibil/K (4.14) 

to arrive at 

Pl  ~ exp{-fl(n)([hl +J~m(H+h))) >(1-P)e~(~ 
[h[ < [H[ 

KtBil;1 

+ ~ P [D(~")(H+h, H+b,) 
heBi  L 

+ 2 p D~)(H+h,H+b~) < -g(6+c~ Ib~l-c21B,I) 
h~Bi 

(4.15) 

with 0 <  c2 < 1 for fl(") large enough. This leaves us again in a similar 
situation as in the zero-temperature case. 

The proof of Proposition 4.1 now follows by putting together (4.9), 
(4.10), and (4.15) and finally applying Lemma 3.2. I 

With Proposition 4.1 we now have control of the renormalization 
group flow on the random variables D ("). To complete the proof of 
Theorem 1, we now just have to prove the analogue of Proposition 4.3 for 
the case of finite temperature. 

To do this, we again have to control the recursion (2.18). Again this 
will be done by first estimating the initial value, then deriving a recursive 
inequality analogous to (3.47), and finally proving a lemma corresponding 
to Lemma 3.4 which will allow us to control it. 
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We begin with the first point 

Pl-(Ih~n~l )n (g)  > 6] 

FZh Phi exp{-/~(")[Ihl +J(f)(H+h)]} > 6 ]  
= P  [_ 2hexp{--fl(~)[Ihl +J(yn')(H+h)]} 

= P [ i h ~  ([hl --6)exp{-~(n)[lhl + Jr + h) ] } 

> 2 (3-thl)exp{-/3( '~ +J~.")(H+h)]}] 
Ihl ~< 6 A 

<<" P E,h~ (Ihl -6)exp{-fl(")[]hl + J:")(H + h)] } 

> ~ exp [ -/~(n)J~"~(H)] ] 

~< ~ Pl-(Ihl-O)exp{-/?(")Elhl +J~n~(H+h)]} 
[hi > ,5 

> c~ 6 exp[ -/~(n)J~)(H) ] -I 

D v (H+h,H)<-Ih l  +~]-~51n (4.16) 

Choosing the constants c~h>~0 with Z ~h = 1 as in (4.5), we find for the 1.h.s. 
of the inequality in the probability in the last line of (4.16) that for any 
0 < C 1 < 1  

1 Ih1-6 
-Ihl + ~ In ~ ~< - c ,  ]hi (4.17) 

if 
h 

~5>~K max (4.18) 
h = ~ , 2 , . . .  1 + K e  (/~(")(I-~1) ~)h 

From (4.16)-(4.18) we have that for /~(~1 sufficiently large there is a 
constant c2 > 0 such that for 6/> e c2B~,), 

PE([h~")I) ,(H)>6]~< ~ PED~n)(H+h,H)< -c~ ]hi] (4.19) 
Ihl > ,5 

From (4.19) we obtain as usual that there is a constant c3 > 1 such that 

Pl-(lh~'~)[ )" (H) > 6] ~< rain {exp ( -  "1-~5"]' exp ( -  2-~2)} 2ff,J (4.20, 

for 6 ~> e-~"~, where fin = c3a,. 
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To tackle the second task and derive the renormalization group 
inequality, we first use a similar manipulation as in (3.47): 

p[< h("~ >re(H)>6] --y 

-~.~21)[h~ ((lh(yn'l)m_l (g)-(~) 

x exp{_B(m)l-lhl (m) ] +Dy (H+h,H)]}>O (4.21) 

Next we separate the term for h = 0 from the rest of the sum and write, for 
positive t / to  be chosen later, 

h(m )m (H) > ~] P [ (  y 

~P[([ y I)m (~) ( H ) - 6 > - r / ]  

nt-P Ih~0 (< -Y h(n, >m-1 (H)--(~) 

x e x p {  _ fl(m)[lh[ (m) ] +Dy (H+h,H)]}>q 

~< p[(lh~")l )m_l  (H) > 6 -  r/] 

+ ~ P[(<th~")l),,, ~(H)-6) 
hr 

xexp{_fl(m)[lh I (m) (4.22) +Dy (H+h,H)]}>othtl] 

where c~ h >0,  Z h , o  C~h = 1. Now, for arbitrary Oh> O, 

P [ ( (  ]h~ n)] >m--1 (H)--6)exp{--fl(m)[] h ] (m) +Dy (H+h,H)]}>~hq] 

~ P [ (  h(n)--y )m I(H) >c] 

A((lh~")l)m l(H)--f>Oh 

v exp{-fl(m)[[h] + (m) O~h1"]~ Dy (H+h, H)]}  > Oh ]j  (4.23) 

Using P [A ca B] ~< min{ P [A ], P [B]  }, we finally arrive at the desired 
recursion inequality which corresponds to (3.47): 
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+ Y~ mintPE<lh~~ (H+h)>~3, 
h#O L 

P[<lh~)l >~_, (H+h)>,~+Oh] 

+P[D(f'(H+h,H)< - Ih t  - ~-~)ln ~hr/] Oh J} (4.24) 

Note that, if fl(m) goes to infinity, we can send r/ to zero and Oh to infinity 
to recover (3.47). What remains to be done is to choose the constants 
depending on fl(m) in a suitable way and to conclude the proof along the 
same lines as in Section 3. 

To be specific, let us set 

r/m : e c~(m) 

o(m) = e~.:~(m) I h l  (4.25) 

e-lh] 
O~h ~ K 

with 0 < cl, c2 < 1. Thus, we may write 

P[D~m~(H+h,H)< -]h[ - fl--~m) In ~hr/~ 
Oh J 

Dy (H+h,g)<- 1--fl(m------5--C 2 Ihl+~+cl 
<~ P[D(ym)(H+h, H ) <  - c l  Ih[] 

~<exp( ,1 h-~-12. ] (4.26) 
C2tTm/ 

with some constants 0 <  c] < 1, c; ~> 1, if /?(m) sufficiently large and a m 
sufficiently small. 

To conclude the proof of Theorem 1 and estimate the renormalization 
group inequality (4.24), it is thus obviously sufficient to show the following 
generalization of Lemma 3.4. 

I . e m m a  4.2. Let the sequence of functions {qk(g)}k>~0 be recursively 
defined by 

qo(g)=exp(- -~max{1,6}) (4.27) 
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for 6 ~>exp(-afl0) and 

qk+l(6)=qk(8--e-Cl&)+ ~ min{q~(8),qk(8+eC2&lhl)+e -Ihl/~} (4.28) 
hr 

for 8/> exp(-Cflo) + 2~=o exp( - clflt), where 

7~ = ckT, //k = Ckflo (4.29) 

and g, Cl, c2>0,  0 < c <  1, C >  1 are constants. 
Then, if Y > 0 is sufficiently small and flo > 0 sufficiently large, there are 

constants 0 < c' < 1, ~' > 0, independent of Y and rio, such that 

qg(8),.< exp ( -  7 max{ 1, 8}) (4.30) 

if 8 1> exp( - c'flo). 

Proof. Since qk(8) is increasing while 7k goes to zero with k going to 
infinity, there will be ko(8) such that for k>..-ko(8) for all h in the sum the 
minimum will be given by the second term. Hence, we will again estimate 
(3.48) for k >>. ko(8), for k <  ko(8), and estimate the value of ko(8) itself. 

If we first assume qj(8)~> exp(-1/72), it follows that 

qj+ i(8) ~J  <..qj(6--e )+  ~ 2e Ihl/~ (4.31) 
heo 

where we have used the rough estimation 

qk(8 + e ~2& Ihl) <~ qk(8) 

in the minimum, which is correct, since under iteration the qk(6) remain of 
course decreasing functions of 8. From the iteration of (4.31) we have 
likewise as in (3.54) for all m >~ j 

1 -~ l& 

q.,(6)<.~qj 6 -  e + 4  ~ Z e-h/~ 
l= j  l= j  h = 1 

~ c 2 q j ( 8 - - m ~ l  e ClflJ) (4.32) 
l= j  

for y sufficiently small with some constant c2 > 1, if 8/> exp( - Cflo) + ~'--o 1 
exp(--Clfll). 

Second, we consider the case qj(8)-.<exp(-1/7~) and proceed as in 
Section 3: We break the sum into two parts and estimate the minimum in 
the first part by qk(6), in the second part by the second term. Let us for a 
moment suppose that we already knew that 

qk((~ "b e ~& Ihl) <~ e -  Ihl/~ (4.33) 
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for arbitrary k. We would then be in a position to estimate 

q j +  1(0) ~ q j ( ( ~  - -  e x p ( -  c1 flj) ) 

{ + 2 #  h>~l, q j ( 6 ) ~ 2 e x p  - ~  q~(6)+?2qj+1(6) 

~< g3(1 - 77 In qj(6)) qj (6 - exp( - Cl fit)) (4.34) 

(with some new constant ?3), which can be estimated along the lines of the 
zero-temperature case: Let us again denote by /~ the minimal number of 
iterations such that qo(6)<~exp(-1/7~),  so that we can use (4.32) with 
j=/~.  Then we may obtain from (4.34) 

~k~ 2 qk(3)~<c3 l-I [ 1 - 7 l  lnqo(6)]qo 6 -  e -c~a: 
l=1 l = j  

(4.35) 

The estimation of the first two factors in (4.35) is the same as in the 
zero-temperature case. Now we can conclude from (4.32) and (4.35) that, 
with some constants c4, ~5 > O, for all k/> O, 

qk(6)<~c2 lnqo(6) j  qo(6)-eS~2qo 6 -  l 

C r 

if 6 ~> exp(-g ' f lo)  with some constants 0 < c ' <  1, g '>  0, which is valid for 
7 and q0 sufficiently small. 

What remains is to justify the assumption (4.33). But to do so, we can 
perform an induction by reconsidering the old lines: (4.33) is true for k = 0. 
Suppose (4.33) holds for k; then we are allowed to use (4.34) one more 
time to get a bound on qk+ 1(6). This bound is obviously estimated by the 
1.h.s. of (4.36). Thus we have 

qk+ 1(6 + exp(c2flk + 1 Ihl )) ~ qk+ l(exp(c2flk + 1 Ihl )) 

~< exp _ "~--2 eC2.6k § t Ihl 

(4.37) 

for all [hi ~ 1, with c' being uniform in k, which proves (4.33). | 
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5. C O N C L U S I O N S  

W e  have  inves t iga ted  a h ie ra rch ica l  m o d e l  for a d o m a i n  wal l  in  a r an -  

dom-f ie ld  I s ing  model .  I n  this a p p r o x i m a t i o n  exact  r e n o r m a l i z a t i o n  g r o u p  
t r a n s f o r m a t i o n s  cou ld  be p e r fo rme d  o n  the s tochas t ic  processes  descr ib ing  

the r a n d o m  fields. In  d i m e n s i o n  D > 3, we have  s h o w n  tha t  s t a r t ing  at 
weak  d i so rde r  a n d  at  low t empera tu re s ,  we are d r iven  to a f ixpoin t  of  zero 
t e m p e r a t u r e  a n d  del ta  f u n c t i o n  at  zero d i s t r i b u t i o n  for the r a n d o m  fields. 

Moreove r ,  the speed of conve rgence  cou ld  be con t ro l l ed  precisely,  which  

a l lowed us to p rove  r igo rous ly  tha t  in  this s i t ua t i on  a r igid in terface  exists. 
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